单频的氦氖激光束被一分束器分成二束光,一半光束通过一可移动的角锥棱镜,另一半则反射到一固定的角锥棱镜。二反射光束回来时在分束器相遇。将所有光路地调准后,这二相遇的光束就相互干涉,并产生干涉条纹。用一小面积的光电探测器计数条纹。每一周期的强度变化表示可移动角锥棱镜行程的半波长。假如已知激光的波长,那么可移动角锥棱镜行程也可地。单频干涉仪的问题是对于噪声太敏感。因此,从移动中无法辨别电噪声还是增益漂移。
双频的干涉仪使用一双频的氦氖激光器,将二个不同频率光束混合后产生一载波频率。因此,携带的距离信息是以交流波形式而不是直流波形式。双频干涉仪的问题是需要笨重的永磁铁以及的光学元件以稳定激光频率,保持偏振,并使回到激光谐振腔的散射光减到小。由于该系统体积笨重,并有大量的光学元件,因此测量时大部分机床需要打开机床罩。
激光多普勒校准系统
激光多普勒校准系统使用一激光多普勒位移测量仪(LDDM),该系统结合了微波雷达技术、多普勒效应以及光学外差技术。LDDM采用了电光、光学外差工艺及相位解调器来移动角锥的位置信息。
LDDM是用一氦氖激光束照射一反射镜来测量位移的。当反射镜移动时被反射的激光束发生频率变化。由于被反射激光束的相位正比于反射镜的位置,因此可以测量位置的变化。
对于LDDM来说,偏振及弥散光不是一个问题,也不需要的光学系统。镜子可以随意插入光路,简单的反射镜就可以用来反射激光束到任意的角度。
如何使用激光多普勒校准系统
要校准普通或者滚珠丝杆,在轴上放一刀片,马达驱动丝杆触发了位置传感器。例如可以用四个位置传感器来采集四套每转的数据。位置传感器送出一TTL脉冲到PCMCIA卡以触发数据采集。不间断地采集数据的关键是外部触发器和数据采集与TTL触发脉冲同步,也即同时采集数据。用四个位置传感器测得的典型的滚珠丝杆的螺距误差是每转0.2英寸。因此在超过20英寸的丝杆上每英寸可以测20个数据。在这个例子中,热膨胀误差比螺距误差小得多。
要校准数控机床的一个轴,将激光头放置在床身上,反射镜或者靶标被安置在主轴上。将激光束与常规静态的激光校准一样调整到平行与主轴。但是与通常每走一步要停5秒钟一直走到终点不同,现在将主轴调整到可以从开始一直连续移动到终点而不需要任何停止。
位置传感器可放置在滚珠丝杆上或者滚珠丝杆的转轮上。非接触的触发器固定在磁座上。触发器的刀片放置在丝杆的转轮上。转轮每转动一次,触发信号被送到PCMCIA卡以采集数据。有一些机床触发信号是来自机床的控制器或者编码器的输出。